空间几何体的表面积和体积(科普数学家:阿基米德)
Author
生成
海报
公众号名称

公众号描述

关注
空间几何体的表面积和体积(科普数学家:阿基米德)
07-26

历史上,古希腊数学家阿基米德最早求出了球的体积及表面积公式。

阿基米德的结果记录在他的两卷著作《论球与圆柱》第一卷中,可以简单地叙述为:

球与其外切圆柱体的体积之比、表面积之比,都等于三分之二。

据说阿基米德希望把这一值得骄傲的发现刻在自己的墓碑上。

本文介绍阿基米德得到球及球冠面积公式的方法,适合中学生阅读。

(一)直圆台的侧面积

初中数学已经学过圆锥的侧面积公式。

利用展开图可知,直圆锥的侧面积等于

其中R是底面圆的半径,L是母线长。

进一步,容易得到直圆台的侧面积公式。

圆台及相关圆锥的轴截面图

命题直圆台的侧面积等于

其中r, R为上下底面圆的半径,d为母线长。

证明:直圆台是从一个大的直圆锥,用平行于底面的平面切除一个小的直圆锥得到的。因此,直圆台的侧面积S等于这两个直圆锥的侧面积之差。

设大小圆锥的底面圆半径分别为R, r母线长分别为L, l则有L=l d, 及

由三角形相似,有

因此得到

这就证明了命题。

(二)旋转体的侧面积

如图,圆弧AL围绕直径AA旋转,得球冠。

我们的目标是求出这个球冠的面积S

为此,先求出特殊的旋转体的侧面积。

任意 n等分圆弧AL, 设分点依次为

则有弦长相等关系式:

对称地,n等分圆弧AL, 设分点依次为

折线ABCD…KL围绕直径AA旋转一周,所得曲面的面积记为Sn

引理这个旋转曲面的面积

证明:所求的面积是一些圆台(圆锥、圆柱)的侧面积之和。

连LL,交AA与M 由上节的命题,得

由相似三角形序列

得到比例式

由合比定理,得

因此

这就证明了引理。

说法:AL, AM分别称为球冠的斜边与高。

(三)球冠的面积

利用穷竭法(古希腊数学的一种特殊极限理论),阿基米德严格地证明了:

当n-

本文由同城头条作者上传并发布,同城头条仅提供信息发布平台。文章仅代表作者个人观点,不代表同城头条立场,未经作者许可,不得转载。
阅读 4

第一次接受赞赏,亲,看着给啊

赞赏
0人赞赏
1
3
5
10
其他金额
金额(元)
赏TA
申请头条作者号

便民信息

更多

推荐阅读

热门评论
随便说点什么
发表评论